Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angiogenesis ; 27(2): 273-283, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37796367

RESUMEN

Notch and its ligands play a critical role in rheumatoid arthritis (RA) pathogenesis. Hence, studies were conducted to delineate the functional significance of the Notch pathway in RA synovial tissue (ST) cells and the influence of RA therapies on their expression. Morphological studies reveal that JAG1, DLL4, and Notch1 are highly enriched in RA ST lining and sublining CD68+CD14+ MΦs. JAG1 and DLL4 transcription is jointly upregulated in RA MΦs reprogrammed by TLR4/5 ligation and TNF, whereas Syntenin-1 exposure expands JAG1, DLL4, and Notch1 expression levels in these cells. Single-cell RNA-seq data exhibit that JAG1 and Notch3 are overexpressed on all fibroblast-like synoviocyte (FLS) subpopulations, in parallel, JAG2, DLL1, and Notch1 expression levels are modest on RA FLS and are predominately potentiated by TLR4 ligation. Intriguingly, JAG1, DLL1/4, and Notch1/3 are presented on RA endothelial cells, and their expression is mutually reconfigured by TLR4/5 ligation in the endothelium. Synovial JAG1/JAG2/DLL1 or Notch1/3 transcriptomes were unchanged in patients who received disease-modifying anti-rheumatic drugs (DMARDs) or IL-6R Ab therapy regardless of disease activity score. Uniquely, RA MΦs and endothelial cells rewired by IL-6 displayed DLL4 transcriptional upregulation, and IL-6R antibody treatment disrupted RA ST DLL4 transcription in good responders compared to non-responders or moderate responders. Nevertheless, the JAG1/JAG2/DLL1/DLL4 transcriptome was diminished in anti-TNF good responders with myeloid pathotype and was unaltered in the fibroid pathotype except for DLL4. Taken together, our findings suggest that RA myeloid Notch ligands can serve as markers for anti-TNF responsiveness and trans-activate Notch receptors expressed on RA FLS and/or endothelial cells.


Asunto(s)
Artritis Reumatoide , Inhibidores del Factor de Necrosis Tumoral , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Células Endoteliales/metabolismo , Receptor Toll-Like 4/metabolismo , Receptores Notch/metabolismo , Biomarcadores , Artritis Reumatoide/tratamiento farmacológico , Ligandos , Receptor Notch1/metabolismo
2.
Microcirculation ; 30(7): e12826, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37605603

RESUMEN

OBJECTIVE: Three-dimensional (3D) microscopy and image data analysis are necessary for studying the morphology of cardiac lymphatic vessels (LyVs) and their association with other cell types. We aimed to develop a methodology for 3D multiplexed lightsheet microscopy and highly sensitive and quantitative image analysis to identify pathological remodeling in the 3D morphology of LyVs in young adult mouse hearts with familial hypertrophic cardiomyopathy (HCM). METHODS: We developed a 3D lightsheet microscopy workflow providing a quick turn-around (as few as 5-6 days), multiplex fluorescence detection, and preservation of LyV structure and epitope markers. Hearts from non-transgenic and transgenic (TG) HCM mice were arrested in diastole, retrograde perfused, immunolabeled, optically cleared, and imaged. We built an image-processing pipeline to quantify LyV morphological parameters at the chamber and branch levels. RESULTS: Chamber-specific pathological alterations of LyVs were identified, and significant changes were seen in the right atrium (RA). TG hearts had a higher volume percent of ER-TR7+ fibroblasts and reticular fibers. In the RA, we found associations between ER-TR7+ volume percent and both LyV segment density and median diameter. CONCLUSIONS: This workflow and study enabled multi-scale analysis of pathological changes in cardiac LyVs of young adult mice, inviting ideas for research on LyVs in cardiac disease.


Asunto(s)
Corazón , Vasos Linfáticos , Ratones , Animales , Ratones Transgénicos , Vasos Coronarios , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional
3.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778334

RESUMEN

Objective: 3D microscopy and image data analysis are necessary for studying the morphology of cardiac lymphatic vessels (LyVs) and association with other cell types. We aimed to develop a methodology for 3D multiplexed lightsheet microscopy and highly sensitive and quantitative image analysis to identify pathological remodeling in the 3D morphology of LyVs in young adult mouse hearts with familial hypertrophic cardiomyopathy (HCM). Methods: We developed a 3D lightsheet microscopy workflow providing a quick turn-around (as few as 5-6 days), multiplex fluorescence detection, and preservation of LyV structure and epitope markers. Hearts from non-transgenic (NTG) and transgenic (TG) HCM mice were arrested in diastole, retrograde perfused, immunolabeled, optically cleared, and imaged. We built an image processing pipeline to quantify LyV morphological parameters at the chamber and branch levels. Results: Chamber-specific pathological alterations of LyVs were identified, but most significantly in the right atrium (RA). TG hearts had a higher volume fraction of ER-TR7 + fibroblasts and reticular fibers. In the RA, we found associations between ER-TR7 + volume fraction and both LyV segment density and median diameter. Conclusions: This workflow and study enabled multi-scale analysis of pathological changes in cardiac LyVs of young adult mice, inviting ideas for research on LyVs in cardiac disease.

4.
Angiogenesis ; 26(2): 249-263, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36376768

RESUMEN

The Notch signaling pathway is an important therapeutic target for the treatment of inflammatory diseases and cancer. We previously created ligand-specific inhibitors of Notch signaling comprised of Fc fusions to specific EGF-like repeats of the Notch1 extracellular domain, called Notch decoys, which bound ligands, blocked Notch signaling, and showed anti-tumor activity with low toxicity. However, the study of their function depended on virally mediated expression, which precluded dosage control and limited clinical applicability. We have refined the decoy design to create peptibody-based Notch inhibitors comprising the core binding domains, EGF-like repeats 10-14, of either Notch1 or Notch4. These Notch peptibodies showed high secretion properties and production yields that were improved by nearly 100-fold compared to previous Notch decoys. Using surface plasmon resonance spectroscopy coupled with co-immunoprecipitation assays, we observed that Notch1 and Notch4 peptibodies demonstrate strong but distinct binding properties to Notch ligands DLL4 and JAG1. Both Notch1 and Notch4 peptibodies interfere with Notch signaling in endothelial cells and reduce expression of canonical Notch targets after treatment. While prior DLL4 inhibitors cause hyper-sprouting, the Notch1 peptibody reduced angiogenesis in a 3-dimensional in vitro sprouting assay. Administration of Notch1 peptibodies to neonate mice resulted in reduced radial outgrowth of retinal vasculature, confirming anti-angiogenic properties. We conclude that purified Notch peptibodies comprising EGF-like repeats 10-14 bind to both DLL4 and JAG1 ligands and exhibit anti-angiogenic properties. Based on their secretion profile, unique Notch inhibitory activities, and anti-angiogenic properties, Notch peptibodies present new opportunities for therapeutic Notch inhibition.


Asunto(s)
Inhibidores de la Angiogénesis , Células Endoteliales , Receptor Notch1 , Receptor Notch4 , Animales , Ratones , Inhibidores de la Angiogénesis/genética , Inhibidores de la Angiogénesis/metabolismo , Inhibidores de la Angiogénesis/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Inmunoprecipitación , Inflamación/tratamiento farmacológico , Inflamación/genética , Inflamación/metabolismo , Ligandos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Receptor Notch1/antagonistas & inhibidores , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptor Notch4/genética , Receptor Notch4/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Vasos Retinianos/efectos de los fármacos , Resonancia por Plasmón de Superficie
5.
Artículo en Inglés | MEDLINE | ID: mdl-35288401

RESUMEN

As vascular networks form, endothelial cells (ECs) undergo cell fate decisions that determine whether they become tip or stalk cells of the developing vascular plexus or mature into arterial, venous, or lymphatic endothelium. EC fate decisions are coordinated with neighboring cells to initiate sprouting, maintain endothelial barrier, or ensure appropriate specialization of vessels. We describe mechanisms that control EC fate at specific steps in these processes, with an emphasis on the role of the Notch signaling pathway. Specific EC fate determination steps that are highlighted are tip/stalk selection during sprouting angiogenesis, venous-arterial specification, arteriogenesis, lymphatic vessel specification, and lymphatic valve formation.


Asunto(s)
Células Endoteliales , Receptores Notch , Humanos , Transducción de Señal , Diferenciación Celular , Morfogénesis , Neovascularización Fisiológica
6.
Sci Rep ; 12(1): 1655, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35102202

RESUMEN

To control sprouting angiogenesis, endothelial Notch signaling suppresses tip cell formation, migration, and proliferation while promoting barrier formation. Each of these responses may be regulated by distinct Notch-regulated effectors. Notch activity is highly dynamic in sprouting endothelial cells, while constitutive Notch signaling drives homeostatic endothelial polarization, indicating the need for both rapid and constitutive Notch targets. In contrast to previous screens that focus on genes regulated by constitutively active Notch, we characterized the dynamic response to Notch. We examined transcriptional changes from 1.5 to 6 h after Notch signal activation via ligand-specific or EGTA induction in cultured primary human endothelial cells and neonatal mouse brain. In each combination of endothelial type and Notch manipulation, transcriptomic analysis identified distinct but overlapping sets of rapidly regulated genes and revealed many novel Notch target genes. Among the novel Notch-regulated signaling pathways identified were effectors in GPCR signaling, notably, the constitutively active GTPase RND1. In endothelial cells, RND1 was shown to be a novel direct Notch transcriptional target and required for Notch control of sprouting angiogenesis, endothelial migration, and Ras activity. We conclude that RND1 is directly regulated by endothelial Notch signaling in a rapid fashion in order to suppress endothelial migration.


Asunto(s)
Encéfalo/irrigación sanguínea , Movimiento Celular , Células Endoteliales/enzimología , Neovascularización Fisiológica , Receptores Notch/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proliferación Celular , Regulación Enzimológica de la Expresión Génica , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Notch/genética , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas de Unión al GTP rho/genética
7.
Dev Cell ; 56(19): 2752-2764.e6, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34610330

RESUMEN

Neuroblastoma (NB), the most common cancer in the first year of life, presents almost exclusively in the trunk. To understand why an early-onset cancer would have such a specific localization, we xenotransplanted human NB cells into discrete neural crest (NC) streams in zebrafish embryos. Here, we demonstrate that human NB cells remain in an undifferentiated, tumorigenic state when comigrating posteriorly with NC cells but, upon comigration into the head, differentiate into neurons and exhibit decreased survival. Furthermore, we demonstrate that this in vivo differentiation requires retinoic acid and brain-derived neurotrophic factor signaling from the microenvironment, as well as cell-autonomous intersectin-1-dependent phosphoinositide 3-kinase-mediated signaling, likely via Akt kinase activation. Our findings suggest a microenvironment-driven explanation for NB's trunk-biased localization and highlight the potential for induced differentiation to promote NB resolution in vivo.


Asunto(s)
Diferenciación Celular/fisiología , Neuroblastoma/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Femenino , Humanos , Masculino , Ratones , Cresta Neural/metabolismo , Neuronas/citología , Neuronas/fisiología , Transducción de Señal , Trasplante Heterólogo/métodos , Tretinoina/metabolismo , Tretinoina/farmacología , Microambiente Tumoral , Pez Cebra/metabolismo
9.
Angiogenesis ; 24(4): 789-805, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33956260

RESUMEN

Collagen type IV (Col IV) is a basement membrane protein associated with early blood vessel morphogenesis and is essential for blood vessel stability. Defects in vascular Col IV deposition are the basis of heritable disorders, such as small vessel disease, marked by cerebral hemorrhage and drastically shorten lifespan. To date, little is known about how endothelial cells regulate the intracellular transport and selective secretion of Col IV in response to angiogenic cues, leaving a void in our understanding of this critical process. Our aim was to identify trafficking pathways that regulate Col IV deposition during angiogenic blood vessel development. We have identified the GTPase Rab10 as a major regulator of Col IV vesicular trafficking during vascular development using both in vitro imaging and biochemistry as well as in vivo models. Knockdown of Rab10 reduced de novo Col IV secretion in vivo and in vitro. Mechanistically, we determined that Rab10 is an indirect mediator of Col IV secretion, partnering with atypical Rab25 to deliver the enzyme lysyl hydroxylase 3 (LH3) to Col IV-containing vesicles staged for secretion. Loss of Rab10 or Rab25 results in depletion of LH3 from Col IV-containing vesicles and rapid lysosomal degradation of Col IV. Furthermore, we demonstrate that Rab10 is Notch responsive, indicating a novel connection between permissive Notch-based vessel maturation programs and vesicle trafficking. Our results illustrate both a new trafficking-based component in the regulated secretion of Col IV and how this vesicle trafficking program interfaces with Notch signaling to fine-tune basement membrane secretion during blood vessel development.


Asunto(s)
Colágeno Tipo IV , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , Membrana Basal , Colágeno Tipo IV/genética , Células Endoteliales , Morfogénesis
10.
Sci Signal ; 14(679)2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879602

RESUMEN

Chloride intracellular channels 1 (CLIC1) and 4 (CLIC4) are expressed in endothelial cells and regulate angiogenic behaviors in vitro, and the expression of Clic4 is important for vascular development and function in mice. Here, we found that CLIC1 and CLIC4 in endothelial cells regulate critical G protein-coupled receptor (GPCR) pathways associated with vascular development and disease. In cultured endothelial cells, we found that CLIC1 and CLIC4 transiently translocated to the plasma membrane in response to sphingosine 1-phosphate (S1P). Both CLIC1 and CLIC4 were essential for mediating S1P-induced activation of the small guanosine triphosphatase (GTPase) Rac1 downstream of S1P receptor 1 (S1PR1). In contrast, only CLIC1 was essential for S1P-induced activation of the small GTPase RhoA downstream of S1PR2 and S1PR3. Neither were required for other S1P-S1PR signaling outputs. Rescue experiments revealed that CLIC1 and CLIC4 were not functionally interchangeable, suggesting distinct and specific functions for CLICs in transducing GPCR signaling. These CLIC-mediated mechanisms were critical for S1P-induced stimulation of the barrier function in endothelial cell monolayers. Our results define CLICs as previously unknown players in the pathways linking GPCRs to small GTPases and vascular endothelial function.


Asunto(s)
Canales de Cloruro/metabolismo , Proteínas Mitocondriales/metabolismo , Neuropéptidos , Receptores de Esfingosina-1-Fosfato , Proteína de Unión al GTP rac1 , Proteína de Unión al GTP rhoA , Animales , Línea Celular , Células Cultivadas , Células Endoteliales , Lisofosfolípidos , Ratones , Neuropéptidos/metabolismo , Receptores de Lisoesfingolípidos/genética , Transducción de Señal , Esfingosina , Receptores de Esfingosina-1-Fosfato/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
11.
Reproduction ; 161(6): 681-696, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33784241

RESUMEN

In the first trimester of human pregnancy, low oxygen tension or hypoxia is essential for proper placentation and placenta function. Low oxygen levels and activation of signaling pathways have been implicated as critical mediators in the promotion of trophoblast differentiation, migration, and invasion with inappropriate changes in oxygen tension and aberrant Notch signaling both individually reported as causative to abnormal placentation. Despite crosstalk between hypoxia and Notch signaling in multiple cell types, the relationship between hypoxia and Notch in first trimester trophoblast function is not understood. To determine how a low oxygen environment impacts Notch signaling and cellular motility, we utilized the human first trimester trophoblast cell line, HTR-8/SVneo. Gene set enrichment and ontology analyses identified pathways involved in angiogenesis, Notch and cellular migration as upregulated in HTR-8/SVneo cells exposed to hypoxic conditions. DAPT, a γ-secretase inhibitor that inhibits Notch activation, was used to interrogate the crosstalk between Notch and hypoxia pathways in HTR-8/SVneo cells. We found that hypoxia requires Notch activation to mediate HTR-8/SVneo cell migration, but not invasion. To determine if our in vitro findings were associated with preeclampsia, we analyzed the second trimester chorionic villous sampling (CVS) samples and third trimester placentas. We found a significant decrease in expression of migration and invasion genes in CVS from preeclamptic pregnancies and significantly lower levels of JAG1 in placentas from pregnancies with early-onset preeclampsia with severe features. Our data support a role for Notch in mediating hypoxia-induced trophoblast migration, which may contribute to preeclampsia development.


Asunto(s)
Movimiento Celular , Hipoxia/fisiopatología , Proteína Jagged-1/metabolismo , Placenta/patología , Preeclampsia/patología , Receptores Notch/metabolismo , Trofoblastos/patología , Adulto , Femenino , Humanos , Proteína Jagged-1/genética , Placenta/metabolismo , Preeclampsia/etiología , Preeclampsia/metabolismo , Embarazo , Segundo Trimestre del Embarazo , Tercer Trimestre del Embarazo , Receptores Notch/genética , Transducción de Señal , Trofoblastos/metabolismo
12.
Int J Mol Sci ; 21(18)2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32899448

RESUMEN

Maternal spiral arteries and newly formed decidual capillaries support embryonic development prior to placentation. Previous studies demonstrated that Notch signaling is active in endothelial cells of both decidual capillaries and spiral arteries, however the role of Notch signaling in physiologic decidual angiogenesis and maintenance of the decidual vasculature in early mouse pregnancy has not yet been fully elucidated. We used the Cdh5-CreERT2;Jagged1(Jag1)flox/flox (Jag1∆EC) mouse model to delete Notch ligand, Jag1, in maternal endothelial cells during post-implantation, pre-placentation mouse pregnancy. Loss of endothelial Jag1 leads to increased expression of Notch effectors, Hey2 and Nrarp, and increased endothelial Notch signaling activity in areas of the decidua with remodeling angiogenesis. This correlated with an increase in Dll4 expression in capillary endothelial cells, but not spiral artery endothelial cells. Consistent with increased Dll4/Notch signaling, we observed decreased VEGFR2 expression and endothelial cell proliferation in angiogenic decidual capillaries. Despite aberrant Dll4 expression and Notch activation in Jag1∆EC mutants, pregnancies were maintained and the decidual vasculature was not altered up to embryonic day 7.5. Thus, Jag1 functions in the newly formed decidual capillaries as an antagonist of endothelial Dll4/Notch signaling during angiogenesis, but Jag1 signaling is not necessary for early uterine angiogenesis.


Asunto(s)
Proteína Jagged-1/metabolismo , Neovascularización Patológica/metabolismo , Neovascularización Fisiológica/fisiología , Animales , Proteínas de Unión al Calcio/metabolismo , Proliferación Celular , Decidua/metabolismo , Implantación del Embrión/fisiología , Desarrollo Embrionario , Endometrio/metabolismo , Células Endoteliales/metabolismo , Femenino , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Jagged-1/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Placentación , Embarazo , Receptores Notch/metabolismo , Transducción de Señal , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
13.
PLoS One ; 15(6): e0233962, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32525899

RESUMEN

High grade serous ovarian cancer (HGSC) is the most common and deadly type of ovarian cancer, largely due to difficulties in early diagnosis and rapid metastasis throughout the peritoneal cavity. Previous studies have shown that expression of Notch3 correlates with worse prognosis and increased tumorigenic cell behaviors in HGSC. We investigated the mechanistic role of Notch3 in a model of metastatic ovarian cancer using the murine ovarian surface epithelial cell line, ID8 IP2. Notch3 was activated in ID8 IP2 cells via expression of the Notch3 intracellular domain (Notch3IC). Notch3IC ID8 IP2 cells injected intraperitoneally caused accelerated ascites and reduced survival compared to control ID8 IP2, particularly in early stages of disease. We interrogated downstream targets of Notch3IC in ID8 IP2 cells by RNA sequencing and found significant induction of genes that encode adhesion and extracellular matrix proteins. Notch3IC ID8 IP2 showed increased expression of ITGA1 mRNA and cell-surface protein. Notch3IC-mediated increase of ITGA1 was also seen in two human ovarian cancer cells. Notch3IC ID8 IP2 cells showed increased adhesion to collagens I and IV in vitro. We propose that Notch3 activation in ovarian cancer cells causes increased adherence to collagen-rich peritoneal surfaces. Thus, the correlation between increased Notch3 signaling and poor prognosis may be influenced by increased metastasis of HGSC via increased adherence of disseminating cells to new metastatic sites in the peritoneum.


Asunto(s)
Carcinoma Epitelial de Ovario/secundario , Cistadenocarcinoma Seroso/secundario , Neoplasias Ováricas/patología , Neoplasias Peritoneales/secundario , Receptor Notch3/metabolismo , Animales , Carcinogénesis/metabolismo , Carcinoma Epitelial de Ovario/metabolismo , Adhesión Celular , Línea Celular Tumoral , Cistadenocarcinoma Seroso/metabolismo , Progresión de la Enfermedad , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Humanos , Ratones , Ratones Desnudos , Neoplasias Ováricas/metabolismo , Neoplasias Peritoneales/metabolismo , Receptor Notch3/genética
14.
Cell Rep ; 29(11): 3472-3487.e4, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31825830

RESUMEN

The vascular endothelial growth factor-A (VEGF-A)-VEGFR2 pathway drives tumor vascularization by activating proangiogenic signaling in endothelial cells (ECs). Here, we show that EC-sphingosine-1-phosphate receptor 1 (S1PR1) amplifies VEGFR2-mediated angiogenic signaling to enhance tumor growth. We show that cancer cells induce S1PR1 activity in ECs, and thereby, conditional deletion of S1PR1 in ECs (EC-S1pr1-/- mice) impairs tumor vascularization and growth. Mechanistically, we show that S1PR1 engages the heterotrimeric G-protein Gi, which amplifies VEGF-VEGFR2 signaling due to an increase in the activity of the tyrosine kinase c-Abl1. c-Abl1, by phosphorylating VEGFR2 at tyrosine-951, prolongs VEGFR2 retention on the plasmalemma to sustain Rac1 activity and EC migration. Thus, S1PR1 or VEGFR2 antagonists, alone or in combination, reverse the tumor growth in control mice to the level seen in EC-S1pr1-/- mice. Our findings suggest that blocking S1PR1 activity in ECs has the potential to suppress tumor growth by preventing amplification of VEGF-VEGFR2 signaling.


Asunto(s)
Neoplasias Experimentales/metabolismo , Neovascularización Patológica/metabolismo , Transducción de Señal , Receptores de Esfingosina-1-Fosfato/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Células HEK293 , Humanos , Masculino , Ratones , Neoplasias Experimentales/patología , Neuropéptidos/metabolismo , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteína de Unión al GTP rac1/metabolismo
15.
Biol Open ; 8(4)2019 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-30971411

RESUMEN

Proper development and function of the mammalian placenta requires interactions between embryo-derived trophoblasts and uterine endothelial cells to form mosaic vessels that facilitate blood flow to a developing conceptus. Notch signaling utilizes a cell-cell contact dependent mechanism to drive cell behaviors, such as differentiation and invasion. In mice, Notch2 is needed for proper placentation and embryo survival. We used transgenic mice with a dominant-negative form of Mastermind-like1 and Cyp19-Cre and Tpbpa-Cre drivers to inhibit canonical Notch signaling in trophoblasts. Both Cre drivers resulted in robust placental expression of dominant-negative Mastermind-like1. All pregnancies progressed beyond mid-gestation and morphological analyses of placentas revealed no differences between mutants and controls. Our data suggest that mouse placentation occurs normally despite dominant negative inhibition of trophoblast canonical Notch signaling and that Notch2 signaling via the canonical pathway is not necessary for placentation.

16.
Cell Rep ; 26(11): 2942-2954.e5, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30865885

RESUMEN

Lung alveolar type I cells (AT1) and alveolar type II cells (AT2) regulate the structural integrity and function of alveoli. AT1, covering ∼95% of the surface area, are responsible for gas exchange, whereas AT2 serve multiple functions, including alveolar repair through proliferation and differentiation into AT1. However, the signaling mechanisms for alveolar repair remain unclear. Here, we demonstrate, in Pseudomonas aeruginosa-induced acute lung injury in mice, that non-canonical Notch ligand Dlk1 (delta-like 1 homolog) is essential for AT2-to-AT1 differentiation. Notch signaling was activated in AT2 at the onset of repair but later suppressed by Dlk1. Deletion of Dlk1 in AT2 induced persistent Notch activation, resulting in stalled transition to AT1 and accumulation of an intermediate cell population that expressed low levels of both AT1 and AT2 markers. Thus, Dlk1 expression leads to precisely timed inhibition of Notch signaling and activates AT2-to-AT1 differentiation, leading to alveolar repair.


Asunto(s)
Células Epiteliales Alveolares/metabolismo , Proteínas de Unión al Calcio/metabolismo , Neumonía Bacteriana/metabolismo , Infecciones por Pseudomonas/metabolismo , Receptores Notch/metabolismo , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/microbiología , Animales , Proteínas de Unión al Calcio/genética , Diferenciación Celular , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Regeneración , Transducción de Señal
17.
ACS Pharmacol Transl Sci ; 2(5): 325-332, 2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-32259066

RESUMEN

Robust angiogenesis in the corpus luteum is critical for maintenance of pregnancy and thus mammalian female fertility. During angiogenesis, blood vessels sprout from pre-existing vasculature and recruit pericytes to induce maturation and vessel quiescence. Pericytes are associated with capillaries and regulate endothelial cell proliferation, vessel diameter, and vascular permeability. Endothelial induction of Notch signaling in adjacent pericytes helps recruit and maintain pericyte coverage in some but not all tissue types. We have employed a Notch decoy, N110-24, which blocks Notch signaling in a ligand-specific manner, and determined that pharmacological inhibition of Notch ligand Jagged blocks luteal angiogenesis after normal ovulation, resulting in reduced luteal vasculature. Conversely, after ovarian hyperstimulation, a condition which occurs during fertility treatments, Jagged inhibition causes vascular dilation and hemorrhage. These results indicate that Jagged inhibition has effects in different ovarian angiogenic conditions, promoting vascular growth in the corpus luteum and vascular stability in hyperstimulated ovaries.

18.
JCI Insight ; 2(21)2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29093274

RESUMEN

Infantile hemangioma (IH) is a vascular tumor that begins with rapid vascular proliferation shortly after birth, followed by vascular involution in early childhood. We have found that NOTCH3, a critical regulator of mural cell differentiation and maturation, is expressed in hemangioma stem cells (HemSCs), suggesting that NOTCH3 may function in HemSC-to-mural cell differentiation and pathological vessel stabilization. Here, we demonstrate that NOTCH3 is expressed in NG2+PDGFRß+ perivascular HemSCs and CD31+GLUT1+ hemangioma endothelial cells (HemECs) in proliferating IHs and becomes mostly restricted to the αSMA+NG2loPDGFRßlo mural cells in involuting IHs. NOTCH3 knockdown in HemSCs inhibited in vitro mural cell differentiation and perturbed αSMA expression. In a mouse model of IH, NOTCH3 knockdown or systemic expression of the NOTCH3 inhibitor, NOTCH3 Decoy, significantly decreased IH blood flow, vessel caliber, and αSMA+ perivascular cell coverage. Thus, NOTCH3 is necessary for HemSC-to-mural cell differentiation, and adequate perivascular cell coverage of IH vessels is required for IH vessel stability.


Asunto(s)
Vasos Sanguíneos/crecimiento & desarrollo , Diferenciación Celular/fisiología , Hemangioma/metabolismo , Receptor Notch3/metabolismo , Células Madre/patología , Animales , Antígenos/metabolismo , Vasos Sanguíneos/metabolismo , Línea Celular Tumoral , Proliferación Celular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Hemangioma/patología , Ratones , Pericitos , Proteoglicanos/metabolismo , Receptor Notch3/efectos de los fármacos , Receptor Notch3/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Células Madre/metabolismo
19.
Placenta ; 55: 5-12, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28623973

RESUMEN

INTRODUCTION: Murine placentation requires trophoblast Notch2, while the Notch ligand, JAGGED1, is reduced in invasive trophoblasts from women with preeclampsia. However, the placental cells with active Notch signaling and expression of other Notch proteins and ligands in placentation have yet to be defined. We sought to identify endothelial cell and trophoblast subtypes with canonical Notch signaling in the decidua and placenta and correlate this to expression of Notch proteins and ligands. METHODS: Notch reporter transgenic mice were used to define canonical Notch activity and immunofluorescence staining performed to characterize expression of Notch1, 2, 3, 4 and ligands, Delta-like 4 (Dll4) and Jagged1 (Jag1) during early placentation and in the mature placenta. RESULTS: Notch signaling is active in maternal and fetal endothelial cells and trophoblasts during early placentation and in the mature placenta. Dll4, Jag1, Notch1, and Notch4 are expressed in maternal vasculature in the decidua. Dll4, Jag1 and Notch1 are expressed in fetal vasculature in the labyrinth. Dll4, Notch2 and Notch4 are co-expressed in the ectoplacental cone. Notch2 and Notch4 are expressed in parietal-trophoblast giant cells and junctional zone trophoblasts with active canonical Notch signaling and in labyrinthine syncytiotrophoblasts and sinusoidal-trophoblast giant cells. DISCUSSION: Canonical Notch activity and distinct expression patterns for Notch proteins and ligands was evident in endothelium and trophoblasts, suggesting Notch1, Notch2, Notch4, Dll4, and Jag1 have distinct and overlapping functions in placentation. Characterization of Notch signaling defects in existing mouse models of preeclampsia may shed light on the role of Notch in developing the preeclampsia phenotype.


Asunto(s)
Células Endoteliales/metabolismo , Placentación , Receptores Notch/metabolismo , Trofoblastos/metabolismo , Animales , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo
20.
Am J Obstet Gynecol ; 215(4): 478.e1-478.e11, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27166013

RESUMEN

BACKGROUND: Premature cervical remodeling resulting in spontaneous preterm birth may begin with premature failure or relaxation at the internal os (termed "funneling"). To date, we do not understand why the internal os fails or why funneling occurs in some cases of premature cervical remodeling. Although the human cervix is thought to be mostly collagen with minimal cellular content, cervical smooth muscle cells are present in the cervix and can cause cervical tissue contractility. OBJECTIVE: To understand why the internal os relaxes or why funneling occurs in some cases of premature cervical remodeling, we sought to evaluate cervical smooth muscle cell content and distribution throughout human cervix and correlate if cervical smooth muscle organization influences regional cervical tissue contractility. STUDY DESIGN: Using institutional review board-approved protocols, nonpregnant women <50 years old undergoing hysterectomy for benign indications were consented. Cervical tissue from the internal and external os were immunostained for smooth muscle cell markers (α-smooth muscle actin, smooth muscle protein 22 calponin) and contraction-associated proteins (connexin 43, cyclooxygenase-2, oxytocin receptor). To evaluate cervical smooth muscle cell morphology throughout the entire cervix, whole cervical slices were obtained from the internal os, midcervix, and external os and immunostained with smooth muscle actin. To correlate tissue structure with function, whole slices from the internal and external os were stimulated to contract with 1 µmol/L of oxytocin in organ baths. In separate samples, we tested if the cervix responds to a common tocolytic, nifedipine. Cervical slices from the internal os were treated with oxytocin alone or oxytocin + increasing doses of nifedipine to generate a dose response and half maximal inhibitory concentration. Student t test was used where appropriate. RESULTS: Cervical tissue was collected from 41 women. Immunohistochemistry showed cervical smooth muscle cells at the internal and external os expressed mature smooth muscle cell markers and contraction-associated proteins. The cervix exhibited a gradient of cervical smooth muscle cells. The area of the internal os contained 50-60% cervical smooth muscle cells that were circumferentially organized in the periphery of the stroma, which may resemble a sphincter-like pattern. The external os contained approximately 10% cervical smooth muscle cells that were randomly scattered in the tissue. In organ bath studies, oxytocin stimulated the internal os to contract with more than double the force of the external os (1341 ± 693 vs 523 ± 536 integrated grams × seconds, respectively, P = .009). Nifedipine significantly decreased cervical tissue muscle force compared to timed vehicle control (oxytocin alone) at doses of 10(-5) mol/L (vehicle 47% ± 15% vs oxytocin + nifedipine 24% ± 16%, P = .007), 10(-4) mol/L (vehicle 46% ± 16% vs oxytocin + nifedipine -4% ± 20%, P = .003), and 10(-3) mol/L (vehicle 42% ± 14% vs oxytocin + nifedipine -15% ± 18%, P = .0006). The half maximal inhibitory concentration for nifedipine was 1.35 × 10(-5) mol/L. CONCLUSION: Our findings suggest a new paradigm for cervical tissue morphology-one that includes the possibility of a specialized sphincter at the internal os. This new paradigm introduces novel avenues to further investigate potential mechanisms of normal and premature cervical remodeling.


Asunto(s)
Cuello del Útero/citología , Miocitos del Músculo Liso/fisiología , Adulto , Cuello del Útero/efectos de los fármacos , Cuello del Útero/fisiopatología , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Inmunohistoquímica , Persona de Mediana Edad , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Nifedipino/farmacología , Oxitócicos/farmacología , Oxitocina/farmacología , Nacimiento Prematuro/etiología , Nacimiento Prematuro/fisiopatología , Tocolíticos/farmacología , Contracción Uterina/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...